PRODUCT CODE	SS103
FINENESS	375 (9K)
COLOR	YELLOW

Master alloy for yellow gold, 9, 10, 14 and 18K. The formulation of SS103 is suitable for production of soldering wires and sheets. The obtained gold alloy is considered a medium solder.

Suitable applications		
Soldering	Soldering	
sheets	wires	

Proprieties		
Commercial composition	Ag38 In0 Zn10 Ga8	Alloy's main elements (%)
Density	11.3	(g/cm³)
Melting Range	685-835	Solidus - Liquidus (°C)
		Soft solders have lower melting point and
Type of solder	MEDIUM	higher wettability, while hard solders have
		high melting point and low wettability.

Mould casting

Put first the alloy in the crucible and cover it with pure gold. Heat the metal 50-100°C more than Liquidus temperature, while protecting the melting with a reducing flame or keeping it in protective atmosphere. Heat the mould at 150 - 200°C and, when the melting temperature is reached, stir the metal and pour it in the mould; after casting, open the mould and cool the metal immediately.

Continuous casting

When using a continuous casting machine, it is preferable to pre-melt gold and alloy. Alloyed gold can then be poured it in a mould or in water and re-melted in the continuous casting machine, or poured directly in the machine's crucible, heating it until it reaches alloy's liquidus temperature. Always protect the melting using a reducing flame over the molten metal. Machine's speed should be the highest possible.

Mechanical work

For the best mechanical results, reduce the section of the wire or plate of 20% before the first annealing process and 40 - 50% before further annealing. Lower reduction could lead to grain growth of the metal structure, higher reductions could lead to brittleness.

Annealing

Heat the metal in protective atmosphere at 510° C for 15-30min (depending on the quantity), then cool it in a solution of 90% water and 10% alcohol or in warm water (~40°C).

Pickling

Sulfuric acid (H₂SO₄) at 10% concentration and 50-60°C can be used to remove surface oxide. Rinse with attention the metal after pickling.

Scraps reuse

PRODUCT CODE	SS103
FINENESS	417 (10K)
COLOR	YELLOW

Master alloy for yellow gold, 9, 10, 14 and 18K. The formulation of SS103 is suitable for production of soldering wires and sheets. The obtained gold alloy is considered a medium solder.

Suitable applications		
Soldering	Soldering	
sheets	wires	

Proprieties		
Commercial composition	Ag38 In0 Zn10 Ga8	Alloy's main elements (%)
Density	11.7	(g/cm³)
Melting Range	690-865	Solidus - Liquidus (°C)
		Soft solders have lower melting point and
Type of solder	MEDIUM	higher wettability, while hard solders have
		high melting point and low wettability.

Mould casting

Put first the alloy in the crucible and cover it with pure gold. Heat the metal 50-100°C more than Liquidus temperature, while protecting the melting with a reducing flame or keeping it in protective atmosphere. Heat the mould at 150 - 200°C and, when the melting temperature is reached, stir the metal and pour it in the mould; after casting, open the mould and cool the metal immediately.

Continuous casting

When using a continuous casting machine, it is preferable to pre-melt gold and alloy. Alloyed gold can then be poured it in a mould or in water and re-melted in the continuous casting machine, or poured directly in the machine's crucible, heating it until it reaches alloy's liquidus temperature. Always protect the melting using a reducing flame over the molten metal. Machine's speed should be the highest possible.

Mechanical work

For the best mechanical results, reduce the section of the wire or plate of 20% before the first annealing process and 40 - 50% before further annealing. Lower reduction could lead to grain growth of the metal structure, higher reductions could lead to brittleness.

Annealing

Heat the metal in protective atmosphere at 520° C for 15-30min (depending on the quantity), then cool it in a solution of 90% water and 10% alcohol or in warm water (~40°C).

Pickling

Sulfuric acid (H₂SO₄) at 10% concentration and 50-60°C can be used to remove surface oxide. Rinse with attention the metal after pickling.

Scraps reuse

PRODUCT CODE	SS103
FINENESS	585 (14K)
COLOR	YELLOW

Master alloy for yellow gold, 9, 10, 14 and 18K. The formulation of SS103 is suitable for production of soldering wires and sheets. The obtained gold alloy is considered a medium solder.

Suitable applications		
Soldering	Soldering	
sheets	wires	

Proprieties		
Commercial composition	Ag38 In0 Zn10 Ga8	Alloy's main elements (%)
Density	13.1	(g/cm³)
Melting Range	700-765	Solidus - Liquidus (°C)
		Soft solders have lower melting point and
Type of solder	MEDIUM	higher wettability, while hard solders have
		high melting point and low wettability.

Mould casting

Put first the alloy in the crucible and cover it with pure gold. Heat the metal 50-100°C more than Liquidus temperature, while protecting the melting with a reducing flame or keeping it in protective atmosphere. Heat the mould at 150 - 200°C and, when the melting temperature is reached, stir the metal and pour it in the mould; after casting, open the mould and cool the metal immediately.

Continuous casting

When using a continuous casting machine, it is preferable to pre-melt gold and alloy. Alloyed gold can then be poured it in a mould or in water and re-melted in the continuous casting machine, or poured directly in the machine's crucible, heating it until it reaches alloy's liquidus temperature. Always protect the melting using a reducing flame over the molten metal. Machine's speed should be the highest possible.

Mechanical work

For the best mechanical results, reduce the section of the wire or plate of 20% before the first annealing process and 40 - 50% before further annealing. Lower reduction could lead to grain growth of the metal structure, higher reductions could lead to brittleness.

Annealing

Heat the metal in protective atmosphere at 530° C for 15-30min (depending on the quantity), then cool it in a solution of 90% water and 10% alcohol or in warm water (~40°C).

Pickling

Sulfuric acid (H₂SO₄) at 10% concentration and 50-60°C can be used to remove surface oxide. Rinse with attention the metal after pickling.

Scraps reuse

PRODUCT CODE	SS103
FINENESS	750 (18K)
COLOR	YELLOW

Master alloy for yellow gold, 9, 10, 14 and 18K. The formulation of SS103 is suitable for production of soldering wires and sheets. The obtained gold alloy is considered a medium solder.

Suitable applications		
Soldering	Soldering	
sheets	wires	

Proprieties		
Commercial composition	Ag38 In0 Zn10 Ga8	Alloy's main elements (%)
Density	15.0	(g/cm³)
Melting Range	740-815	Solidus - Liquidus (°C)
		Soft solders have lower melting point and
Type of solder	MEDIUM	higher wettability, while hard solders have
		high melting point and low wettability.

Mould casting

Put first the alloy in the crucible and cover it with pure gold. Heat the metal 50-100°C more than Liquidus temperature, while protecting the melting with a reducing flame or keeping it in protective atmosphere. Heat the mould at 150 - 200°C and, when the melting temperature is reached, stir the metal and pour it in the mould; after casting, open the mould and cool the metal immediately.

Continuous casting

When using a continuous casting machine, it is preferable to pre-melt gold and alloy. Alloyed gold can then be poured it in a mould or in water and re-melted in the continuous casting machine, or poured directly in the machine's crucible, heating it until it reaches alloy's liquidus temperature. Always protect the melting using a reducing flame over the molten metal. Machine's speed should be the highest possible.

Mechanical work

For the best mechanical results, reduce the section of the wire or plate of 20% before the first annealing process and 40 - 50% before further annealing. Lower reduction could lead to grain growth of the metal structure, higher reductions could lead to brittleness.

Annealing

Heat the metal in protective atmosphere at 560° C for 15-30min (depending on the quantity), then cool it in a solution of 90% water and 10% alcohol or in warm water (~40°C).

Pickling

Sulfuric acid (H₂SO₄) at 10% concentration and 50-60°C can be used to remove surface oxide. Rinse with attention the metal after pickling.

Scraps reuse